
I AD-A128-509 0ON A PROBLEM CONCERNING SPACINOS U) NORTH CAROLINA UNI V /
AT CHAPEL HIL CENTER FOR STOCHASTIC PRECESSES 5 CHENG

I FEB 83 TR-27 AFOSR-TR-83-0420 F49620 02-C 0009

UNCLRSSIFIED / 121 Nsonmmmmmhmm
I.E' T1



11111 * -2512

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS- 1963-A

* ~ 7Ilk



J R.TR. .- 0 4 2"

CENTER FOR STOCHASTIC PROCESSES

Department of Statistics
University of North Carolina
Chapel Hill, North Carolina

(0 WT)X

ON A PROBLEM CONCERING SPACIGS 1 ELECTE

Shihoug Cho" V ~MAY 2 5 198

CLTECHNICAL REPORT #27 A
C-)CFebruary 

1983

,. * d roe pdblle mleagee IuMutflbut ion unlmiated.
9, If3ri I , 2i1 ft m,

83 Os 2.3 02 0

- ---- -----



if; $ , 1 ~UNCLASSIFIAD
SECURITY CLASSIFICATION OF THIS$ PAGE (fMen Date EnADtered)ION

REPORT DOCUMENTATION PAGE BRE cOMPTING ORM

1. ~ REOR NU0B4R20 12. JVT ACCESSION S RECIPIENT'$ CATALOG HUM&r

14. TITLE (And Subtile) S. TYPE Of REPORT & PERIOD COVERED

ON A PROBLEM CONCERNING SPACINGS TECHNICAL

S. PERFORMING ORGa. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(&)

Shihong Cheng F49620-82-C-0009

0. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

University of North Carolina PE61102F; 2304/A5
Chapel Hill NC 27514

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Mathematical & Information Sciences Directorate FEB 83
Air Force Office of Scientific Research 13. NUMBER OF PAGES
Bolling AFB DC 20332 12

14. MONITORING AGENCY NAME & ADORESS0I different from, Controling Office) 1S. SECURITY CLASS. (at this report)

UNCLASSIFIED
150. DECLASSIFICATION/DOWNGRADING

SCHEDULE

1S. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

17. DIST RIBUTION STATEMENT (of the abstract enltered In Bl1ock 20. it different from~ Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on revere side it necessary and identify by block rnumbep.'
Spacings; exact distribution; limiting distribution; Fibonacci distribution;
almost sure convergence.

20. ABSTRACT (Coninue an reverse side it necOesay and Identify by block nmber)

SEE REVERCE

DOA.". 1473 If7ATTf



F-7
I UNCLAqSSIFIED

- - S2'CuRIyV CLASSIFICATICOF T IS PAGS(UftUI 0090 Keemed)

IITE14 #20, CONTINUED: 
.

Abstract: Let {)be an i1i.d. sequence uniformly distributed on (0911 and U~n-1)

:5 .. -1 be the order statistics of U 9...' U,. Then S -).UU-

1.,.,n (Define U(~ 0 0, U n) 1) are called the spacings divided by III$ ...

Denote Mn = ,max_ S(n) AS(n) The exact and limiting distribution of Mn is
Ilisn- Si i+1'.
Idetermined. It is also proved that

lrn 2nM n/logn -=1 8.3.
n n

* which refines a result of Chow, Conan and Vu.

40 1

SCCUgIIY CLASSIPICAflOW OP ?"IS PAGWfiiD an mw..



AcesoIo
NTIS QRA&I

ON A PROBLEM CONCERNING SPACINGS-

Shihong Cheng
Peking University S

and .:-,
University of North Carolina

Abstract: Let { Fbe an i.i.d. sequence uniformly distributed on [0,1] and Uti1  !

n (efie U(n1) 0,U n-1 :.1)arecaledthe spacings divided by Ii .

U Denote M= max S. )AS f).The exact and limiting distribution of M is

1r i 2nM n /logn = 1 a.s.
.. ~un~) e heorer~ n~ Ten~~) ~nn

which refines a result of Chow, (eman and Wu.

Keywords: Spacings, exact distribution, limiting distribution, Fibonacci distribution,I almost sure convergence.

AtFOW? Tnc rCE OW IrjNrC PC

002IC20 OSV M2jrAL IV DI'za
MI t~ehniocii report j&aS been revieaftd ard I
Improved ftr Pi,.Aij relese lAWAyPR 1.1@12
Distribution is unliaited.
ITTM~ J. * awfl

* Chief, Thobnioai I& 0ousmti DIyIgd.a



1. Introduction

Let {Un, n=l,2,...} be an i.i.d. sequence uniformly distributed on [0,11, and

(n) N)
U 5..: be the order statistics of U,..., U .The random variables Si
1 nn

" ui - u (n l.... n+l are called the spacings divided by U1 ,..., nU, where

.(n) An-v
n

-0 =o, UJn 1  1l. The maximum of spacings plays an important part in nonparametric

problems. Its exact and asymptotic behavior has been studied by many authors (See
Wrie.W(n+l) .-Sn+l)S _n+l)

Darling 14], Pyke [8], Slud [9], Devroye [S] and so on). Write w l fi+ ,

>l..... n. The behavior of M = max W.n! I) is important in cross-validated ker-
n+l in 1

nel density estimation. (See Chow, Geman and Wu [3] and Marron (71). In this pa-

per we give the exact distribution of Mn in section 2. In section 3 we discuss the

behavior of a certain distribution function, which will be called the Fibonacci

distribution function. Chow, (,eman and Wu [31 have shown that there exists a con-

stant C such that

(1.1) P(nM/logn !C i.o.) = 0

where "i.o." means infinitely often. In section 4, we will refine (1.1) by showing

that

(1.2) P(lim 2nMn /logn = 1) = 1
n n!

The limiting distribution of Mn is also discussed in this section.

2. The exact distribution of M.

n

* .Let Y1 , , Y be n random variables whose joint distribution function is

F(y2 ,..., yn). We call Y,..., Yn exchangeable random variables if F(yil,..., Yn

F(Yl,.... yn) for any permutation' li1 ,..., in) of (1,..., a). Given yeR, let

A {YAll" {J'Y' Je'l"" ... ,jk); Yj~,J-~'" Jk }" 'SY ..."<Jk sn "
JI.. Jk

If Yl,.'" Yn are exchangeable, the probabilities of the events A will be the

S,. '- ' " " " =F./ *. , '-
'

,''
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same. Denote

(2.1) F k(y) =P(A. .l*j ) * 1ij<... .<jk Sn

and F(O (y) = F(y19...., yn).

Lemma 2.1

Suppose that Y1l...,I Y n are exchangeable. Then

(Y AY ):5 n~l)/ /2] I (k

(2.2) P( max Y A+Y Y) I (k+ )1F ()

where F ()(y) is defined by (2.1) and [x] is the integer part of x.

Proof. The event {I max (Y AY + )sy} means that there is no index i such that

fY g Y) and {Y i1 > y} happen simultaneously. Hence this event is the union of Ek

k=0,1,.. ., [(n~l)/21, where E k is the event "there are k integers 1!5jl< .. .<jkn whi ch

do not contain two consecutive integers, such that the event A. . happens." We

j obtain

jP( max (Y.iAY i+)5y) P( k
l!5isn-l1 il k=O P(k

since {Ek are disjoint events. Since Y1 ,*.., Y~ are exchangeable, it follows that

P(Ek (n-k+l) F (k) (Y)

where ( nk1 ) is the number of k-element subsets that can be selected from the set

{,.,n} and that do not contain two consecutive integers (see [11, Chapter 3).

We first find the exact distribution of Pf n Define

x x>O

We have

Theorem 2.2

(2.3) P(M,!x) [(~)2 nkI n- (_,C~- ) {(1-(k~t)xl In-1

k-fl t 

-, 

11



Proof. It is known that

(n) (n) nn-l
P(S I >x1,**... S n >xn) = (-~ x)]

where xi, ... . x are nonnegative numbers (see Devroye [5]). Hence the spacings
n

(n) (n)
S I S n are exchangeable, and Lemma 2.1 can be used in this case. Notice

that

P( n>'.'S(n) > (n) 5x.. (n),x

1 k) nkl t n()

= (~n >X'.. S(1>) (-1)tI P(S(n)>x Skn> ~),..'N

n-k tnkn-

so that the theorem is proved.

3. The Fibonacci distribution function.

fLet X n-G(x), n=1,2,... be an i.i.d. sequence and Z n = max_ (X AX ). From
1:5isn-1

(2.2) we have

Lemma 3.1

[(n+i)/21 -+ -
(3.1) P(Z sx) I k) (x[I-G(x)]

n k=

*Now define the Fibonacci distribution function by

[(n~i) /2]nk1) nk()
(3.2) F*(x) )= x x0x

The name Fibonacci was chosen because

F 12, F ~ ~ '0 ~ al (n+i)/2] n-k~io , Fn.2 k=0 kn1...

$ Is the sequence of Fibonacci numbers. By using the generating function method for

finding the values of Fibonacci numbers, the su a(f2 nk~ can be found as

follows.

-- ~ -"R ~~J~j Z
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* Lemma 3. 2

For any n=O,l,2,...,

(3.3) g [,lZx/0 1 l 6 / 1

where 8 = (1.4ct) 11

Proof. For convenience, let n~ 0 if k<O or n<k. Then it follows that

n-k+1 n-k+ - (l/2

and therefore that

gn1 'n 1 + gn n=1,2,.

Hence we obtain

2

P(X) (lectx)/(1-x-ctx 2

whereP~x n 0 g x nis the generating function of the sequence {gn). Expand
P(x) = (l+ctx)/(l-x-ax ) into a power series:

P(x) {[l.(1+2ct)/$]/[l-x(l.8)/2] + [l-(l.2c)/8]I[l-x(l-0)/2])/2

= {(l.(l+2c)O8[(l.O)l2]n + 1(+(),,,,/]lXn/

Comparing the above series with the definition of P(x), we have (3.3), to complete

the proof.

Now the Fibonacci dM. can be represented as

(3.4) Fn*(x) x n+ 1 ((l-x)/x) ,O~x<l

where gn ((l-x)/x) is the value of gnlat ia (l-x)/x. We discuss the asymptotic

behavior of the Fibonacci distribution function as follows.

Theorem 3.3

If x ne(0,1), n-1,2.... is a sequence such that, as ne
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(3.5S) ny

where yn l- x then wehave

3 2
(3.6) F*(Xn) = [l+O(yn)e.O(ny)]exp[-ny]l

Proof. Write

where

u (xn [1+(1+2y/xi(+4yi/xr) 1/2 I{x [1+(1+4y /x ) 1/2]12)~

vn (x n = (-(+2y/xn)/1(14y n/x n) ]{xn l-(l+4y n/x n 1/2

Noticing that

(1+2y nfx n)/(1+4 /x,12

2 2j (1e2y/x )(l-2y/x 0(y)) 1l+0O)

nn/ n(X Ynn

2
we kno v n(xn)/un(Xn) = 10 (y nd hrfr

~1 Hence to prove (3.6), we need only to show that
3 2u (X )/(2xn) = (l+O(y ))(le.0(nyn))exp(-nyn)

(See (3.7)). This follows from

* u~(xn)/(2x)= (1.0(~ n n

2 3 I
(1+O(yn)) nl(+ynx-y'xnOyn)/

j '~ =(1+(y))(-Y 2 .O(y 3 ")

0 = (l.O~y,.)) ezp{-ny2.(ny~

- iOy)(.(ny3 ))exO1-ny 2

completing the proof of theorem 3.3.
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4. The asymptotic behavior of M1n

Unless otherwise stated, X(np n=1,2,... will be an i.i.d. exponential sequence

in this section.

Lemma 4.1

n (n)(n)
Let T n= 1i= X ,. The spacings (S~l~ S n )are distributed as (X /T n X nX/T).

Proof. See Pyke [8].

Lemma 4.2

For all x>0, the following inequalities hold:

2
(4.1) P(T /n-l<>x) s exp-nx (l/2)n

Proof. See Devroye [5].

Lemma 4.3

Let {C n, n } be r.v. sequences. If there exist a n>0, b nsuch that

P(E a x~b 4.~'Yx
n n n)cTX

P P0r n/n-1 and (n n/n-l)b n/a n 0

then

P(YNfri (a x~b )/n) T'(x)

Proof. The sequences n {(E -b )/a I and Qt~ -b 11 /n)/a Ihave the same limiting dis-

tribution since (ni /n-1)b /a - 0 in probability. The sequences {(En-b ri /n)fa
an n n n n

(nd n h-bn)/a n have the same limiting distribution since n n /n I in probability.4 j Hence lemma 4.3 is proved.

Theorem 4.4

For any xeR
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(4.3) lrn P(Mn~gx/2n+logn/ 2n) =exp[-exp(-x)]

Proof. By using lemmna 4.1, (4.3) is equivalent to

(4.4) lrn P(Z /T sx/2ni.1ogn/2n) = exp[-exp(-x)]
n nn

By using lemma 4.2, it can be shown that

CT /n-l)logn - 0
n/

Hence by using lemma 4.3, (4.4) holds if we show that

*(4.5) lrn P(Zn5(x+logn)/2) = exp[-exp(-x)]
n

From (3.1) and (3.2), we have

P(Z !(x+logn/2) = F*(x)

where x -1 - exp(-(x+logn)/2]. It is easy to check that ny 3 U, y -~0, ny2 -o-exp(-x
n Yn n Yn

- [Hence (4.S) follows from (3.6), completing the proof of (4.3).

Remark 1. Using the methods of section 3, we can show that Gnedenko's theorems (See

*1[6]) for the i.i.d. case will still'be valid for the sequence (X iAX i+l where {X }

* is i.i.d. but not necessarily exponential. The same statement may also follow from

Watson [10].

Remark 2. It is easy to show, from theorem 4.4, that

V.(4. 6) 2M n /logn t1

Now we turn our attention to proving (1.2). It is easy to see that (1.2) is

* equivalent to the following equations:

(4.7) P(limsup 2nM Ilogn:51) - 1

*(4.8) P(livinf 2i*; /lognkl) - 1
n

n

But (4.7) and (4.8) are equivalent to the statement that for any 6>0,

(4.9) P(2AV I/ogn>1.6 i.o.) *0
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(4. 10) P(2n/ /ogn-,l-6 i.o.) =0

Lemma 4.S

Equation (4.10) holds.

Proof. Let A n= {2nM n/logn:5i-6), n=1,2......By the Borel-Cantelli lemma, to prove

(4.10), it is sufficient to show that

(4.10) 1 P(An) < 0
n=l

Using lemma 3.1 and 3.2, we have

(4.11) P(A n) = P(z n -(1-6S)T nlogn/(2n))

n n n n

n n

where E: = 2n- 1 -6 /2 )/2 and therefore (1-6)(1.c n 5 1 -6/2, 1-c n> 1/2 if n is

sufficiently large. By letting x n = 1 -exp[-(l..6/2)logn/2], it is easy to check

that ny 3 -~ 0, ny 2 = n 62, and therefore theorem 3.3 can be used for this case. Hence

P(Z !5(l-6/2)logn/2)

(la.O(1))exp(-n )

Now from (4.11), we have

P(An) 5 Cexp(-n 6/

where C is a constant. Then (4.10) follows since ~" exp(-n ) converges for anyn=1

c>0, completing the proof of lemma 4.5.

To prove (4.9) we need the following lema. which is stronger than the Borel-

4Cantelli lma
Leima 4.6

1'

* Let lA}be a sequence of events with limP(Akn) u0. If either P(A A~ or
An' n n n+l

niP(A A',1)< then P(A i.o.) =0.n= n U
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Proof. See Barridorff-Neilsen [2].

Lemma 4.7

Equation (4.9) holds.

Proof. Let u n = (l+6)lognI2, u n (l+6)logn/(2n) and A n IM n>u n. By using

lemma 4.6, to prove (4.9) we need only to show

(4.12) P(A A' < 0

n n f n+l

{s. (n u (n S.n AS <n ,{

Writing E I) for the set ISn) AS (n)>- (n)A + (n) jj~i} and noticing that u

is nonincreasing, we have

P(A AC ) P(M >u ,M 5u )
n n+l n n' n+1 n+1

=n P(E (n) n{U(nl)Uz 5u ( n-1)Z

i~ i i n+l n 1 n+l

If() i n+1 n 1 n+l n-1)d
i=l E.

2ij P(E (n))

!c 2u P(M >U)n nn)

2= n P(Z n>u nT n/n)

!5 2u P(Z >(l-C )u + 2u P(T /n~lci )

0 for -ny c n 0. Furthermore, using lemma 4.2, we obtain that

ii (Tmd- )~ l+6(lgnexp(-nc 2 /2)/n
n(./~ ii n 5 n6(on n

and therefore can choose cn- 0 such that

In
uU ( /~-
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Hence to show (4.12), it is sufficient to prove
00

(4.13) 1 _Un P(Z n>(l+6/2)logn/2) <

n=l

since (1-c )(1+6) > 1 - 6/2 and therefore
n

for large enough n. Let x = 1 - exp[-(l+6/2)logn/2] = 1 - n (1+6/2)/2, y = 1 - X.
3

Then we have nyn = o(yn) and therefore (3.6) can be rewritten as

FnCXn) = [l+O(yn)]exp(-nY2)

nn Yn

Now (4.13) follows from the fact that

P(Z >(l+6/2)logn/2) = 1 - F*(xn)
n n n

5 CI[1-exp( = -n /
2) ]  C2n-(1+6/2)/2

!9 Cn 6/2 + Cn ( 1 +6 / 2) / 2

(C1 ,C2 C3 are constants) and the fact that the series -.=1 logn/nl+E converges for

any c>O. This completes the proof of lemma 4.7.

Combining lemma 4.5 and 4.1, we obtain

Theorem 4.8

Equation (1.2) holds.

Acknowledgement. This paper was completed during the author's visit to the Univer-

sity of North Carolina at Chapel Hill. The author is grateful to Dr. J.S. Marron

for posing the question discussed in this paper. The author also thanks Dr. Marron

and Professor M.R. Leadbetter for helpful discussions during the course of this

research.

f' :~



U

References

[1] Aigner, M. (1980). Combinatorial Theory. Springer-Verlag.

[21 Barndorff-Nielsen, 0. (1961). On the rate of growth of the partial maxima of
a sequence of independent identically distributed random variables. Math.

* j *Scand. 9 383-394.

[31 Chow, Y.S., Geman, S., and Wu, L.D. (1983). Consistent cross-validated densi-
ty estimation. Ann. Statist. 11 (to appear).

[41 Darling, D.A. (1953). On a class of problems related to the random division
of an interval. Ann. Math. Statist. 24 239-253.

[51 Devroye, L. (1981). Laws of the iterated logarithm for order statistics of
uniform spacings. Ann. Prob. 9 860-867.

f6j Gnedenko, B. (1943). Sur la distribution limite de terme maximum d'un s6rie
al6atoire. Ann. Math. 44 423-453.

[7] Marron, J.S. (1983). An asymptotically efficient solution to the bandwidth
problem of kernel density estimation. NC Inst. Stat. Mimeo Series #1518.

[8 Pyke, R. (1965). Spacings, J. Roy. Statist. Soc. 27 395-436.

[91 Slud, E. (1978). Entropy and maximal spacings for random partitions. Z.
Wahrsch. Verw. Geb. 41 341-352.

1101 Watson, G.S. (1954). Extreme value in samples from m-dependent stationary
stochastic processes. Ann. Math. Statist. 25 798-800.

ir

-* i
______________ .,i::~


